
Written Exam for the M.Sc. in Economics Autumn 2013 (Fall
Term)

Financial Econometrics A: Volatility Modelling

Question A:
Solution A.1: In the sample τ + 1, ..., T, yt is a Markov chain with a

Gaussian transition density which satisfies the regularity conditions (to be
verified) such that the drift criterion can be applied. To see this rewrite,

σ2t = 1− α + αε2t−1 = 1− α + α (yt−1/vt−1)
2 .

Moreover, with δ (y) = 1 + y2, (note ”t+ 1”)

E (δ (yt+1) |yt = y) = 1 + (ω + γ)E
((
1− α + α

(
y2t / (ω + γ)

))
z2t+1|yt = y

)
= 1 + (ω + γ) (1− α) + αy2,

such that standard arguments give 0 ≤ α < 1. Hence for ω + γ > 0, and
α < 1 the process is geometrically ergodic with a stationary solution with
E (y2t ) <∞. Finally, E (y2t ) = (ω + γ).

Solution A.2: LT (θ) = LT,1 (θ) + LT,2 (θ) with σ21t = ω (1− α) + αy2t−1
(since t ≤ τ) and σ22t = (ω + γ) (1− α) + αy2t−1 (since t > τ)

LT,1 =
τ∑
t=2

(
log
(
σ21t
)
+ y2t /σ

2
1t

)
and LT,2 =

T∑
t=τ+2

(
log
(
σ22t
)
+ y2t /σ

2
2t

)
.

The two-step: variance targeting. Hence, as s21 = ω̂ + γ̂, and s22 = γ̂, we find
ω̂ = s21 − s22. Next α̂ is found by maximizing LT (ω̂, γ̂, α) over α (or simply
an ARCH(1) model for the full sample). Less effi cient, but clearly simpler.

Solution A.3: Simple differentiation and insertion gives the first part.
Next, as mt := (1− z2t ) (1− α0) /

(
(ω0 + γ0) (1− α0) + α0y

2
t−1
)
is a martin-

gale difference, E (mt) = 0, and we use the CLT (applying the geometric
ergodicity of yt) to see the result (and E (1− z2t )

2
= 2). That κ <∞, follows

by
(1− α0) /

(
(ω0 + γ0) (1− α0) + α0y

2
t−1
)
< 1/ (ω0 + γ0) <∞.

Solution Question A.3: The xt series indeed looks as one would expect
from the spARCH as around τ = 500 the (conditional) volatility seems to
change dramatically. This is confirmed in the graph where indeed the smooth
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curve indicates a one shift in volatility around t = 500. That â+ b̂ = 1 is the
usual IGARCH issue (misspecified model potentially: room for some lines of
explanation here). Normality is clearly rejected - hence misspecified model -
fat tails etc. That there is no ARCH "left" from the test of ARCH effects is
again stemming from the IGARCH filter discussion: a misspecifed IGARCH
filters the (realized) volatility.

Question B:
Solution Question B.1: Simple application of drift criterion with δ (σ) =

1 + (log σ2)
2 implies that σt ∈ R+ satisfies the assumptions of Theorem 1

in the SV lecture notes as ρ21 (|log σ2| ≤ γ) tends to zero (is bounded by a
constant) as log σ2 tends to infinity, whatever ρ2 is. That ρ = 1 is allowed,
may be explained by noting that as

∣∣log σ2t−1∣∣ → ∞, or ’drifts away‘, then
δt → 0, and log σ2t reduces to Gaussian white noise N

(
µ, σ2ξ

)
. In particu-

lar, ρ = 109 is also implying stationarity etc. Indeed the joint process is
also weakly mixing, either by lecture notes theorem or quoting Meitz and
Saikkonen (2008)
Solution Question B.2: εt = log z2t − µ, with zt Gaussian, and therefore

εt is not. Know that V (log |zt|) = π2/8 and hence σ2ε = V (2 log |zt|) = π2/2.
The linear Kalman filter would not apply as even in the prediction step,

we get

Xt|t−1 = E (g (Xt−1)Xt−1|Y1:t−1) 6= cE (Xt−1|Y1:t−1) = cXt−1|t−1.

In the lecture notes the notation, Xt|t−1 = x̂t|t−1 is used.
Solution B.3: As noted the linear KF does not apply - neither does the

extended KF seem promising as ρ (x) is not differentiable. Would need some
simulation based way, such as the particle filter to simulate the likelihood
function. Discussion, and/or summary of particle filter estimation is needed
here. Note that an alternative would be GMM but this is not covered in notes
and letcures. The ox code piece is the Bootstrap proposal draws (details to
be included in answer).

Solution Question B.4: TSV: clearly see the threshold. GARCH: higher
spikes - explain. Explanations expected. An estimator of the variance given
the past can be obtained from the predicted latent proces for log-volatility,
ht|t−1 = E(ht|xt−1, ..., x1), which could be estimated as ĥt|t−1 = n−1

∑n
i=1 h

(i)
t ,

where {h(i)t }ni=1 denotes the particles from the prediction step, i.e. before
resampling. The conditional variance is obtained as σ̂2t,MLE = exp(ĥt|t−1).
This is the predicted volatility. The corresponding filtered volatility is based
on the filtered latent process, ht|t−1 = E(ht|xt, ..., x1), also conditioning on
the current observed observation xt. This is estimated using the weighted
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particles, ĥt|t =
∑n

i=1 ŵ
(i)
t h

(i)
t , or after resampling, ĥt|t = n−1

∑n
i=1 h̃

(i)
t , where

{h̃(i)t }ni=1 is obtained by resampling with replacement from the catagorical
distribution given by the possible outcomes and corresponding probabilities,
(x
(1)
t , ..., x

(n)
t ;w

(1)
t , ..., w

(n)
t ).
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